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Determination of the Principal Directions of Composite Helicopter
Rotor Blades with Arbitrary Cross Sections
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Modern helicopter rotor blades with non-homogeneous cross sections, composed of
anisotropic material, require highly sophisticated structural analysis because of various cross
sectional geometry and material properties. They may be subjected by the combined axial,
bending, and torsional loading, and the dynamic and static behaviors of rotor blades are
seriously influenced by the structural coupling under rotating condition. To simplify the analysis
procedure using one dimensional beam model, it is necessary to determine the principal
coordinate of the rotor blade. In this study, a method for the determination of the principal
coordinate including elastic and shear centers is presented, based upon continuum mechanics.
The scheme is verified by comparing the results with confirmed experimental results.
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1. Introduction

Different from the fixed wings of aircraft, heli­
copter rotor blades play an important role in
control as well as in thrust and lift, and the
technique to minimize the vibration, caused by
structural mass and repeated loads, is indispens­
able to analyse and design the helicopter rotor
blades. Composite materials are good choice of
the blade materials in that they have excellent
stiffness, durability, and manufacturability of the
monolithic construction (Pinkey, 1974). The com­
posite blades have simplified hubs, instead of
conventional hubs which are composed of three
hinges to receive forces in three directions without
reaction.

Simplified hubs have advantages in mainte­
nance and reliability, but have disadvantages in
complicated cross sections and anisotropicity
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(Joe, 1993). Most of structural models, developed
in the past, were analysed using beams with
simple cross section such as circular tube, I-beam,
rectangular box, and so on.

Three dimensional finite elements can be em­
ployed, but this "brute force" technique, as
pointed out by Hodges (1990), is quite expensive,
and the form of the results is not amendable to
easy interpretation. Since rotor blades are of long
shape, one dimensional model may be feasible at
least from the view point of computation. How­
ever, although one dimensional or beam
kinematics can be formulated in a rather elegant
fashion, constitutive laws in terms of three dimen­
sional elastic constants for small strains can only
give approximations when the structure is to be
treated as one dimensional. In this case, it is a key
to minimize the latent error caused by one dimen­
sional modelling. (Jung, 1993)

The modelling of composite rotor blades has
been made in various ways, but they can be
arranged in two classes, remarkably. In the first
method, cross sectional properties such as shear
center, warping function and rigidity are obtained
through two dimensional linear analysis, con-
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sidering the anisotropy of composite materials

(Wondle, 1982; Giavotto et. al., 1983; lung and

Kim, 1996). The second method derives govern­

ing equation from kinematics considering geomet­

ric nonlinearity, cross sectional warping, shear

effects, and so on (Bauchau and Hong, 1987;

Chandra and Chopra 1992; Hodges, 1979; Yoo et.

al., 1997). But the former cannot describe the

cross sectional geometry sufficiently, because it

assumes the rotor blade to be simple box

cantilevered beam. In the same time, it is a heavy

burden to analyze the two dimensional cross

section early in the design of rotor blade. While

the other have an application trouble, because the

governing equation has to be derived each time

whenever configuration of the rotor blade is

changed.

Many efforts are attempted to propose a brief

modelling technique. Among their efforts, there is

a method which has been studied using equivalent

stiffness matrix of rotor blade (Rapp and Won­

die, 1992; Yu et. al., 1995; Yu et. al., 1996).

However, in this case, it is a key for accurate

solution to treat coupling terms. To deal with

coupling terms properly, it is necessary to deter­

mine the principal coordinate including elastic

and shear centers. Also principal directions are

significant in the design of rotor blade geometry.

In this study, the principal coordinates are

determined using equivalent stiffness matrix,

based upon the concepts of equivalent energy and

matrix operation. To verify this study, the scheme

is applied to the models of confirmed known

results.

2. Equivalent Stiffness Matrix

Rotor hubs used to have three hinges to remove

the stress action on the root of rotor blade, since

there had been no material which can support

against flapping, lag, and feathering, simultane­

ously. Three hinges make the structure of hub

complicate mechanically and have difficulties in

maintenance and performance. Rotor blades can

be substituted to the type of flexible beam by

developing composite materials which can con­

trol the required directional rigidity by choosing
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R : Total length of the blade
r : Longitudinal position of the blade
r / R - 0 : Root. r / R - 0.5 : Mid position. r / R - 1 : End

Fig. 1 Illustration of blade section

Fig. 2 Illustration of rigid modelling

the ply angles and the order of composite lami­

nates like fiber reinforced plastics, but the struc­

tural analysis of the blades become difficult rela­

tively.

Rotor blades may be subjected to combined

axial, bending, and torsional loading. The

dynamic and static behaviors of rotor blades are

seriously influenced by structural coupling under

rotating condition. Therefore it is very important

to determine the principal coordinates of the

structure of rotor blades to treat the complexity of

coupling terms in the governing equations of

motion.

The rotor blade introduced in this study, as

shown in Fig. I, has no hinge. The inner part of

rotor blade is made of wood and foam. The wood

gives the rotor blade rigidity but the foam makes

only shape of the blade and it is attached to the

tail. The whole part is coated by composite

material. The twisted angle from fixed end to free

end is 15 degree.

To extract equivalent stiffness of a cross section
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From the concepts of the energy conservation,

To determine the shear center, the equations

related to the shear center of force and displace-

where a and b represent constants related to the

material.

Stiffness matrix [A] is of shape as below,

because they are in principal direction, as in Ref.

(Kardestuncer and Norrie, 1987).

where ails are constants, i. j = I, 2, 3, 4, 5, 6

Force-displacement relationship can be

divided into two categories. First, to determine

the elastic center, the equations related to the

elastic center of force and displacement can be

written, as in Ref. (Rapp and Wondle, 1992).

x6.
The relation between {«} and {u'} can be

expressed as below

x'=x+b8y-a8z (a)
y'=y-bBx (b)
z'=z+aBx (c)
8;=Bx (d)

8;= By (e)
8;= 8z (I)

y

y' The subscript e means that the above terms are

with respect to the elastic center.

Expanding the above, and a and b become

a=~ b = _.!!Ji.
b.,' bll

Fig. 3 Illustration of coordinate system

z z'

{uF = (x' y' z' 8; 8; 8~)

The relationship between load vector {j} and

displacement vectors {u} and {u'} is as below

{j}= [A] {u} = [B] {zz"]

where [A] and [B] are stiffness matrices of 6

3. Principal Coordinate System

of the blade, an arbitrary node is given to the

cross section of blade, as shown in Fig. 2, the

node has no physical meaning. The equivalent

stiffness matrix is extracted from the given node

using the concepts of reduction in the finite ele­

ment method. From the equivalent stiffness

matrix, the principal coordinate system can be

obtained by using beam theory which includes

shear center, elastic center, and principal direc­

tions.

Arbitrary cross section of cantilevered beam, as

shown in Fig. 3, has two origins 0 and 0' whose

distance is a in y-direction, b in z-direction from

origin O. Displacement vector can be expressed as

below at origin O.

{u F = (x y z 8x 8y 8z)

Assume that the coordinate systems expressed

by origin 0, 0' and displacement [zz}, {u'} are in

principal direction and displacement vector {u'}
can be expressed as below at origin 0' which is

the shear center
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ment are written as below (Rapp and Wondle,

1992) .

Secondly, to determine principal directions,

rotational transformation is used and expressed

by

o
-3.0075e+004

o
o
o

1.8007e +005
(12)

o 0
6.0150e+003 0

o 6.0150e+003

o 0
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(6) is as below in

o 0
o 0
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o 0

The stiffness matrix by Eq.

Eq. (12)
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In the same way, a and b can be expressed by

( 10)
Two stiffness matrix agree with each other very

well.

and the stiffness matrix by finite element model is

as below in Eq. (13)

000
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I 0 0 0 0 0
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o sine cose 0 0 0
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0 0 0 I 0 0
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From the above, the principal direction B can

be found in Eq. (10).

B=J.-tan-l ( 2Kg 56 )
2 KC66 - Kg 55

I JK=-tan-1 ( - g23 )
2 Kg 33 - Kg 22

and, relation between rotated stiffness matrix by

B, [Kg], and stiffness matrix in principal coordi­

nates, [Kp ] , is

[Kp ] = [R] T[Kg ] [R] (9)

4. Results and Discussion

To verify the orthogonal transformation, a

cantilevered beam of which cross section is regu­

lar tetragon is introduced. The stiffness matrix,

which is rotated by 30° in three dimensional finite

element model, is compared with the stiffness

matrix which is calculated by Eq. (6)

Fig. 4 Cross section of right-angled triangle cantile­
ver beam

y
12cm

(J I){I} = [K] {Zl}

where
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proportional tendency with twisted angle because
of homogeneous material.

On the basis of the above mentioned, The
comparison of twisted angle and principal direc­
tion of the rotor blade whose cross section is as
explained in Fig. 1 is shown in Fig. 6 where two
lines are not parallel. The reason is that the rotor
blade material is not homogeneous, but is
laminated composite, of which ply angle accumla­
tion order are designed differently along the lon­
gitudinal direction to assure the reguired rigidity
of the simplified hub portion. The locations of the
elastic and the shear centers, were determined
experimentally in Ref. (Joo, 1993), in which real
blade model NACA-0012 was adapted as shown
in Fig. 7.

The rotor blade is made up of spar, tail skin,
weight balance, and tail foam which are built in
glass fiber roving, fabric woven, lead, and poly
urethan, respectively

The shape of the rotor blade of NACA-0012
has an axis of symmetry, since one of the princi­
pal directions, is along the axis of symmetry. In

Blade Axis(\)

Fig. 6 Principal direction of composite rotor blade
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Next, for a cantilevered beam whose cross
section is a right triangle having a height of
120mm and a width of 90mm as shown in Fig. 4,
equivalent stiffness matrix at free end is as in Eq.
(14) in the principal direction.

o
-1.0385e+005

o
o
o

8.3452e +005

(14)

As mentioned above terms of (2, 3), (3, 2), (5,
6), (6, 5), (2, 5), (3, 6), (5, 2), (6, 3) in the
equivalent stiffness matrix have to be eliminated
in principal coordinate system and the above
results meet this requirements very well.

When this right triangular cantilevered beam
get twisted by 15 degrees from fixed end to free
end, the comparison of twisted angle and princi­
pal direction with respect to the longitudinal
position of the beam is shown in Fig. 5. It is
natural for principal direction to have a same

Fig. 5 Principal direction of right-angled triangle
cantilever beam

Length(Cm)

Fig. 7 Illustration of reference blade
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Eqs. (5), (7) and (10) after the components of

the equivalent stiffness matrix are evaluated. In

Fig. 9 the locations of the elastic and the shear
centers are indicated for the rotor blade whose

cross section is as explained in Fig, l. They are
almost coincided, and they look like one line.

It. ; i,xpati ..u.tal Shut' Cut.r
C : ShuI' Center( in thi. tit.,)

B : Expuiullul Elutic Cenur
D : El..tic Cllnter(itl this .tad.,) 5. Conclusion

Fig. 8 Center of reference blade

Fig. 9 Position of elastic and shear center

Fig. 8 the locations of the elastic and the shear

centers obtained using the scheme of this study
are represented and compared with the centers

found by the experiments in Ref. (Joo, 1993).
Two locations of the elastic and shear centers,

agree well. Since the parts of fixed end of the
blade may not be fully constraint in Ref. (Joo,

1993). it is considered that the minute discrep­

ancies are caused by constraint condition.
The shear center is defined to be that the point,

given any cross-sectional configuration, at which

a shear load produces no twisting, and can be
determined by intersecting the resultants of shear

force in the principal direction. But it is very
difficult problem to use these definitions in prac­
tice. Therefore it has been paid dear to determi­
nate the shear center as in Ref. (Wondle, 1982),

in which a special finite element has been devel­
oped. The method using equivalent stiffness

matrix in this paper has something to benefit not
only in saving efforts but also in applications,

because principal coordinate including elastic
and shear centers can be readily obtained using

Modern helicopter rotor blades with non­

homogeneous cross section which are made from
anisotropic material require highly sophisticated

structural analysis. Variation in cross section
geometry makes the task of analysis more compli­
cated. Because they may be subjected to combined

axial, bending, and torsional loading, the
dynamic and static behavior of rotor blades is
seriously influenced by structural coupling under

rotating conditions, which depend upon the prin­
cipal coordinate system. To determine the princi­
pal coordinate system, equivalent stiffness matrix

is derived by reduction technique in the finite
element method, and the principal coordinate
system is determined using simple matrix opera­
tions with the elastic and shear centers obtained

using the equivalent stiffness matrix. This method
is also applied to the model of experiments in Ref.
(Joo, 1993). The results are in good accordance
with each other.

The scheme to determine the principal coordi­
nate system in this study is quite simple and
accurate compared with other methods, since only

matrix rotation transformation is used to get
uncoupled principal coordinates with equivalent

stiffness matrix. This can be utilized in the design
of helicopter rotor blades, with saved effort and
time.
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